Adiabatic optimization without local minima

نویسندگان

  • Michael Jarret
  • Stephen P. Jordan
چکیده

Several previous works have investigated the circumstances under which quantum adiabatic optimization algorithms can tunnel out of local energy minima that trap simulated annealing or other classical local search algorithms. Here we investigate the even more basic question of whether adiabatic optimization algorithms always succeed in polynomial time for trivial optimization problems in which there are no local energy minima other than the global minimum. Surprisingly, we find a counterexample in which the potential is a single basin on a graph, but the eigenvalue gap is exponentially small as a function of the number of vertices. In this counterexample, the ground state wavefunction consists of two “lobes” separated by a region of exponentially small amplitude. Conversely, we prove if the ground state wavefunction is single-peaked then the eigenvalue gap scales at worst as one over the square of the number of vertices.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Elimination of perturbative crossings in adiabatic quantum optimization

It was recently shown that, for solving NP-complete problems, adiabatic paths always exist without finite-order perturbative crossings between local and global minima, which could lead to anticrossings with exponentially small energy gaps if present. However, it was not shown whether such a path could be found easily. Here, we give a simple construction that deterministically eliminates all suc...

متن کامل

Adiabatic quantum optimization fails for random instances of NP-complete problems

Abstract Adiabatic quantum optimization has attracted a lot of attention because small scale simulations gave hope that it would allow to solve NP-complete problems efficiently. Later, negative results proved the existence of specifically designed hard instances where adiabatic optimization requires exponential time. In spite of this, there was still hope that this would not happen for random i...

متن کامل

On the relevance of avoided crossings away from quantum critical point to the complexity of quantum adiabatic algorithm

Two recent preprints [B. Altshuler, H. Krovi, and J. Roland, “Quantum adiabatic optimization fails for random instances of NP-complete problems”, arXiv:0908.2782 and “Anderson localization casts clouds over adiabatic quantum optimization”, arXiv:0912.0746] argue that random 4th order perturbative corrections to the energies of local minima of random instances of NP-complete problem lead to avoi...

متن کامل

Avoid First Order Quantum Phase Transition by Changing Problem Hamiltonians

In Amin and Choi [1], we show that an adiabatic quantum algorithm for the NP-hard maximum independent set (MIS) problem on a set of special family of graphs in which there are exponentially many local maxima would have the exponentially small minimum spectral gap and thus would require the exponential time, due to the first order quantum phase transition (FQPT). The problem Hamiltonian of the a...

متن کامل

Anderson localization makes adiabatic quantum optimization fail.

Understanding NP-complete problems is a central topic in computer science (NP stands for nondeterministic polynomial time). This is why adiabatic quantum optimization has attracted so much attention, as it provided a new approach to tackle NP-complete problems using a quantum computer. The efficiency of this approach is limited by small spectral gaps between the ground and excited states of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Quantum Information & Computation

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2015